Calling instructions for the browser version of the Leeqia Screenshot Control

1Calling instructions for the browser version of the Leeiqa Screenshot Control

21.
interface initialization interface

32.
parameter initializes the interface

143.
Launching the screenshot interface

164.
An event that notifies the browser when a screenshot is completed

185.
other interfaces

196.
Example of a call to

227.
Certificate Automatic Renewal Integration Description

The purpose of this document is to explain the browser control of the screenshot control, and guide the caller to smoothly integrate the screenshot control into third-party web pages, so that the third-party web pages can also have a perfect bull's-eye screenshot function.
For a demo page of the Bull Screenshot page, please visit.https://ggniu.com/screencapture/onlinedemo/#ct2

Written in front of the words: Niu Niu screenshot control currently supports a richer feature , more rich interfaces , but to ensure that the basic functions of the interface is not complex , in view of the document , please check the corresponding interface according to their own needs ; add a watermark , get the clipboard picture belongs to the advanced features , if you do not need , this part can be ignored .

Reminder: NiuNiu screenshot of the core calling code has been encapsulated in all the niuniucapture.js, in general, you do not need to modify only the content of the file, only need to refer to, and write their own JS to integrate with the UI can be, see the example (capturewrapper.js).

Cow screenshot control browser version of the control can work properly in all major browsers , the following interface description applies to all browsers , and provide the corresponding Javascript call examples . Control has three main interfaces : InitCapture, InitParam and Capture, these interfaces are exposed to the browser's Javascript calls , you can refer to the callWebNiuniuCapturedemo_source.zip, the interface is described as follows.
1. The initializes the interface
int InitCapture (const char* szAuth);
This interface function is used to initialize the authorization information of the screenshot control, the default authorization code is: "niuniu".
Parameter Description.
	parameter name
	parameter type
	Parameter description
	Remarks

	szAuth
	String
	authorization code for an interface call
	The default authorization code is: "niuniu".

	
	
	
	

2. parameter initializes the interface
int InitParam (int flag, unsigned long flagvalue);
This interface function is used to initialize the display effect of the interface in each state of the screenshot, if it is not called, it will be processed by the default value.
Parameter Description.
	parameter name
	parameter type
	Parameter description
	Remarks

	flag
	int
	The parameter item to be set
	This corresponds to the shaping value of the enumeration ExtendFlagTypeEnum

	flagvalue
	unsigned long
	The value of the parameter set by the
	Setting different values based on different enumerations

The enumeration is defined as follows.
typedef enum ExtendFlagTypeEnum

{

emPensize = 1, //

emDrawType, //

emTrackColor,
//

emEditBorderColor,
//

emTransparent, //

emWindowAware,

emDetectSubWindowRect,

emSetSaveName,

emSetMagnifierBkColor, //set the background color of the magnifier, if not set then it is transparent

emSetMagnifierLogoText, //Set the logo character on the magnifier, can prompt the shortcut key, such as: Niu Niu screenshot (CTRL + SHIFT + A)

emSetPreCaptureWindowTitle, //Set the title of the window that pops up when a screenshot is taken on a web page

emSetPreCaptureWindowTransparent=18,//Set the transparency of the pre capture window

emSetWatermarkPictureType=20,

// set the type of watermark

emSetWatermarkPicturePath,

//Set the path of the watermark

emSetWatermarkTextType,

//Set the type of watermark text

emSetWatermarkTextValue,

//Set the watermark text

emSetMosaicType,

// set the style of the mosaic
 emSetTooltipText,

//Set the TOOLTIP of the toolbar icon and the text of the Done button
};
The enumerations are described as follows.
	enumerated parameter names
	enumerating the corresponding values
	Description of parameter values
	Remarks

	emPensize
	1
	Set the size of the brush
	If not set, the default is 2

	emDrawType
	2
	Setting whether it's Tencent style or 360 style
	0 means Tencent style,1 means 360 style

	emTrackColor
	3
	Track and the color of the automatically recognized border
	e.g.:RGB(255, 0, 0)

	emEditBorderColor
	4
	The border color of the text input box
	e.g.: RGB(0, 174, 255)

	emTransparent
	5
	The transparency of the toolbar, the
	Default is 220

	emWindowAware
	6
	Set whether to disable zoom with DPI, flagvalue can be passed any value
	which is not recommended to be called in browsers

	emDetectSubWindowRect
	7
	Whether to auto-detect sub-windows, not useful for now
	Unused

	emSetSaveName
	8
	Set the name of the file to be saved when
	E.g
const char* szName = "Test name";
InitParam (emSetSaveName, (unsigned long) szName);

Note: the free version of this interface is invalid, the default value will be displayed

	emSetMagnifierBkColor
	9
	Used to set the background color of the magnifying glass
	Generally, it is not recommended to set the default transparent

	emSetMagnifierLogoText
	10
	Set the displayed logo text on the magnifying glass
	E.g
const char* szName = "Test name";
InitParam (emSetMagnifierLogoText, (unsigned long) szName);
Note: This interface is not available in the free version and will show the default value

	emSetPreCaptureWindowTitle
	11
	Set the title of the popup window that appears when you take a screenshot on a web page
	E.g
const char* szName = "Test name";
InitParam (emSetPreCaptureWindowTitle, (unsigned long) szName);
Note: the free version of this interface is invalid, the default value will be displayed

	emSetPreCaptureWindowTransparent
	18
	Sets the transparency of the pre-screenshot window
	InitParam(emSetPreCaptureWindowTransparent, 220);

	The following is the watermark setting function, if you don't need it, you don't need to pay attention to it

	emSetWatermarkPictureType
	20
	Used to set how the watermark image is drawn
	This parameter setting has a default value, only in the authorized version can be modified settings, see the following watermark picture description

	emSetWatermarkPicturePath
	21
	The image data used to set the BASE64 of the watermarked image
	Note: Only PNG format images with Base64 strings are supported

	emSetWatermarkTextType
	22
	Used to set the way the watermark text is drawn
	This parameter setting has a default value, only in the authorized version can be modified settings, see the following watermark text setting instructions

	emSetWatermarkTextValue
	23
	for setting the watermark text
	Note: The watermark text passed here needs to be BASE64 encoded, call the interface.
InitParamByBase64

	emSetMosaicType
	24
	Specifies the style of the mosaic
	1 for the rectangle,2 for the way to draw lines with the mouse

	emSetTooltipText
	25
	Set the TOOLTIP of the toolbar icon and the text of the Done button
	This parameter setting has a default value and can be modified only in the licensed version, see below for a description of the toolbar button text settings

	The following parameters are only available for Macos

	PriviledgeTitle
	0
	Used in version 10.15 when a pop-up window is required to prompt for permissions
	Turn on the screenshot permission

	PriviledgeInfo
	0
	Used in version 10.15 when a pop-up window is required to prompt for permissions
	Due to macOS 10.15 system requirements, please check NiuniuCapture in "System Preferences - Security & Privacy - Screen Recording"

	PriviledgeOK
	0
	Used in version 10.15 when a pop-up window is required to prompt for permissions
	Defaults to "OK"

	PriviledgeCancel
	0
	Used in version 10.15 when a pop-up window is required to prompt for permissions
	Default is "Cancel"

a). Description of watermark image setting parameters.
The value of the parameter here is a string, separated by |, such as.
//nShowType|nMinWidth|nMinHeight|nMaxWidth|nMaxHeight|nShowOffset|nHorizonInterval|nVerticalInterval
Without authorization, the corresponding settings of this parameter will adopt the default value and can not be modified; the default size of the supported images is 200*200, and if the size exceeds this size, it will only display the images within the range of 200*200.
The meaning of each field is as follows.
	parameter name
	Description of parameter values
	Remarks

	nShowType
	Sets the drawing type
	1 indicates that the watermark is displayed in the center; the
2 indicates that the watermark is displayed in the lower right; the
3 indicates composite type [add watermark in the center by default, and display the watermark in the corners at the same time when the width and height are greater than maxwidth and maxheight].
4 Full-screen drawing
The default type is 1

	nMinWidth
	Sets the minimum size of the image to draw the watermark image
	When the width or height of the image size is smaller than the setting, the watermark will not be drawn
Default:60*60

	nMinHeight
	
	

	nMaxWidth
	When the width and height are greater than the MAX setting, a watermark will be displayed in each corner
	These two options are only valid when nShowType is 3
Default:600*600

	nMaxHeight
	
	

	nShowOffset
	Control the offset when displaying the watermark [center display does not work], and also control the offset of each corner
	For example, if the display is in the upper left corner, this offset indicates the offset value from the left and the upper edge
Default 20

	nHorizonInterval
	Horizontal spacing when drawing full screen (this spacing itself does not take into account the width of the image)
	Effective only when nShowType is 4
Default:60

	nVerticalInterval
	Vertical spacing when drawing full screen (this spacing itself does not take into account the height of the image)
	Effective only when nShowType is 4
Default:60

Example.
const char* szWatermarkFlag = "3|100|100|400|400|20|60|60";
b). Instructions for setting the watermark text.
The value of the parameter here is a string, separated by |, such as.
//nShowType|nMinWidth|nMinHeight|nVerticalInterval|nOffset|nFontSize|nIsBold|nTextWidth|nTextHeight|colorText|angle|nHorizonInterval
//the value of colorText is:A,R,G,B
If the parameter is not authorized, the default value will be used for this parameter and cannot be modified.
The meaning of each field is as follows.
	parameter name
	Description of parameter values
	Remarks

	nShowType
	Sets the drawing type
	1 indicates that the watermark text is displayed in the center.
2 indicates that the watermark text is displayed in the lower right; the
3 indicates that the composite type, in the middle of the figure from top to bottom cycle to add a 45-degree inclined watermark text
4 Full-screen drawing
Default type is 3

	nMinWidth
	Sets the minimum size of the image to draw the watermark image
	When the width or height of the image size is smaller than the setting, the watermark will not be drawn
Default 60, 60

	nMinHeight
	
	

	nVerticalInterval
	Cyclically draws the height of the interval of the skewed watermark text (this interval itself does not take into account the height of the text)
	This option is only valid if nShowType is 3
Default 150

	nOffset
	Controls the offset when displaying the watermark text [center display does not take effect], the
	Valid when nShowType is 2, indicates the offset from the lower right corner.
When nShowType is 3, it indicates the offset of the top start position
When nShowType is 4, it means start drawing from the origin offset nOffset
Default 20

	nFontSize
	the font size of the watermark text
	Default 20

	nIsBold
	whether the watermark text is bolded or not
	Default No

	nTextWidth
	The width of the watermarked text, when the width of the character exceeds this width, it will not be displayed
	It is recommended that you test the width in the setup before setting it up a second time
Default 150

	nTextHeight
	the height occupied by the watermark text
	It is recommended that you test the width in the setup before setting it up a second time
Default 50

	colorText
	comma-delimited ARGB color settings
	e.g.: 55,255,0,0 means the transparency is 55 red
Default:#66333333

	nAngle
	the angle of inclination of the text
	This option is only valid if nShowType is 3 or 4
Default -30

	nHorizonInterval
	The width of the interval at which the skewed watermark text is drawn in a loop (this interval itself does not take into account the width of the text)
	This option is only valid if nShowType is 3 or 4
Default 150

Example.
const char* szWaterTextFlag = "3|60|60|150|20|20|0|200|50|80,55,55,55|-30|150";
c). Instructions for setting the tooltip icon.
The value of the parameter here is a string, separated by |, such as.
//tipRectangle|tipCircle|tipArrow|tipBrush|tipGlitter|tipMosaic|tipText|tipUndo|tipSave|tipCancel|tipFinish|txtFinish|txtPreButton|txtPreTitle|txtPreNotice1|txtPreNotice2|txtSaveTitle|extbtn1|extbtn2|extbtn3|extbtn4|extbtn5|extbtn6
If the parameter is not authorized, the default value will be used for this parameter and cannot be modified.
The meaning of each field is as follows.
	parameter name
	Description of parameter values
	Remarks

	tipRectangle
	Set the tooltip of the rectangular button
	Default: "Rectangle Tool"

	tipCircle
	Set the tooltip for the ellipse button
	Default: "Ellipse Tool"

	tipArrow
	Set the tooltip for the arrow buttons
	Default: "Arrow Tool"

	tipBrush
	Set the tooltip for the paintbrush button
	Default: "Brush Tool"

	tipGlitter
	Set the tooltip for the highlighter button
	Default: "Highlighter Tool"

	tipMosaic
	Set the tooltip for the mosaic button
	Default: "Mosaic Tool"

	tipText
	Set the tooltip for the text button
	Default: "Text Tool"

	tipUndo
	Set the tooltip for the undo button
	Default: "Undo"

	tipSave
	Set the save button's tooltip
	Default: "Save"

	tipCancel
	Set the cancel button's tooltip
	Default: "End Screenshot"

	tipFinish
	Set the tooltip for the Done button
	Default: "Finish Screenshot"

	txtFinish
	Set the display text of the Done button
	Default: "Completed"

	txtPreButton
	Sets the button text for the pre-screenshot window
	Default: "Start Screenshot"

	txtPreTitle
	Sets the title of the pre-screenshot window
	Defaults to: "Bull Screenshot [www.ggniu.cn]"

	txtPreNotice1
	Setting the first line of the pre-screenshot window's prompt
	The default is: "Please adjust the window to show the area you want to take a screenshot of,"

	txtPreNotice2
	Setting the second line of the pre-screenshot window's prompt
	Defaults to : "Click the screenshot button again to start taking a screenshot..." , the

	txtSaveTitle
	Set the title of the save window
	The default is: "Please select a directory to save to"

	extbtn1
	Extending the tooltip for button 1
	valid only when the button is displayed

	extbtn2
	Extend the tooltip for button 2
	valid only when the button is displayed

	extbtn3
	Extending the tooltip for button 3
	valid only when the button is displayed

	extbtn4
	Extending the tooltip for button 4
	valid only when the button is displayed

	extbtn5
	Extending the tooltip for button 5
	valid only when the button is displayed

	extbtn6
	Extending the tooltip for button 6
	valid only when the button is displayed

Example.
const wchar_t* sz ToolbarText

= L"Rectangle|Circle|Arrow|Brush|Glitter|Mosaic|Text|Undo|Save|Cancel|Finish|Finish|txtPreButton|txtPreTitle|txtPreNotice1|txtPreNotice2|txtSaveTitle|txtExtbtn1|txtExtbtn2|txtExtbtn3|txtExtbtn4|txtExtbtn5|txtExtbtn6";
d) MoreInfo and more extended parameter descriptions
Example.
subtype,subparamstring

Example.
Set the value of captureObj.MoreInfo in js, or set the array captureObj.More_Ext_Params
//If you want to set additional parameters, add them to the array as follows, e.g. to hide the specified buttons
//captureObj.MoreInfo = "2,rectangle|text";

//captureObj.More_Ext_Params[0] = "2,rectangle|text";
	parameter name
	Description of parameter values
	Remarks

	subtype
	subtype control
	2 means hide the toolbar button
3 indicates the addition of the expansion button
4 means set the image of the expansion button

	params
	Description when Subtype is 2
	Used to control the buttons to be hidden.
rectangle|circle|arrow|brush|glitter|mosaic|text|barsplit1|undo|save|cancel|finish|barsplit2|rectsize

	params
	Description when Subtype is 3
	Used to control the expansion buttons to be displayed.
extbtn1|extbtn2|extbtn3|barsplitext|extbtn4|extbtn5|extbtn6
These extensions button click, the equivalent of clicking the finish button, in the callback extinfo will contain btnname, specifically which button is clicked, so as to differentiate the processing
extbtn1-3 are between text and undo; barsplitext and extbtn4-6 are after the finish button

	params
	Description when Subtype is 4
	Setting the image for each button
btnname|imgsize|ishover|imgpath

btnname: the name of the button to be set, such as extbtn1.
imgsize:1x or 2x image, fill in 1 or 2
ishover: if or not the picture is hover, fill in 0 or 1.
imgpath, fill in the path

e) a description of the function of the customized buttons
NiuNiu Screenshot control is configured with 6 default hidden buttons, which can be used for special needs, such as clicking the button to complete, notify the host program, and then proceed to different business processes.
The customized button names and separators are as follows.
#define TOOLBAR_NAME_EXT1 _T("extbtn1")

#define TOOLBAR_NAME_EXT2 _T("extbtn2")

#define TOOLBAR_NAME_EXT3 _T("extbtn3")

#define TOOLBAR_NAME_SPLIT_EXT _T("barsplitext")

#define TOOLBAR_NAME_EXT4 _T("extbtn4")

#define TOOLBAR_NAME_EXT5 _T("extbtn5")

#define TOOLBAR_NAME_EXT6 _T("extbtn6")
An example of a customized button location is as follows.
[image: image1.png]658 * 115

FAELR: hip:/ e conin on

N

Through the command to control the display at the same time, but also through the emMoreInfo parameter to set the picture information to be displayed, the picture generally contains two states, and each state contains twice the picture and twice the picture, so a total of four pictures need to be set.
The format is as follows.
subtype,btnname|scale|ishover|picpath or base64

Examples are as follows.
//If you want to set additional parameters, add them to the array as follows, e.g. to hide the specified buttons
//captureObj.MoreInfo = "2,rectangle|text";

//captureObj.More_Ext_Params[0] = "3,extbtn1";
If you want to set other buttons, just call them in turn.
3. Launching the screenshot interface
void Capture(const char* defaultName, int hideThisWindow, int nAutoCapture, int x, int y, int width, int height);
This interface is used for actual screenshot calls, passing relevant screenshot control parameters to control the behavior of the screenshot.
Parameter Description.
	parameter name
	parameter type
	Parameter description
	Remarks

	defaultName
	String
	Used to specify the name of the file that is automatically saved when the screenshot is completed
	E.g
111.jpg

Here it is recommended to pass the subsequent name jpg or png, to facilitate the transfer of data on the web page uploaded to the backend

	hideThisWindow
	int
	Specifies whether the current browser window should be hidden or not
	The values are as follows.
1 means hide the current window when taking a screenshot.
0 means do not hide the current window when taking a screenshot

	autoCapture
	int
	Marking the way the screenshot of the
	This parameter has five values.
0: indicates a normal screenshot
1: indicates to intercept the specified area, the area is specified by x, y, width and height parameters
2: means intercept the current desktop
3: Indicates that when taking a screenshot, a prompt window will pop up first
4: Get the image from the clipboard

	x
	int
	Specifies the area of the screenshot
	These four values mean that the specified area is automatically intercepted when the value of the parameter autoCapture is 1.
When autoCapture is 3
1). If all zeros are present, the pre-screenshot window pops up and then the area is selected
2). If all of them are 1, then after the pre-screenshot window pops up, the whole desktop will be captured automatically
3). In other cases, after the pre-screenshot window pops up, the specified area is automatically intercepted

	y
	int
	
	

	width
	int
	
	

	height
	int
	
	

4. An event that notifies the browser when a screenshot is completed
CaptureFinished(int type, int x, int y, int width, int height, const char* extInfo, const char * picdata, const char * localsavepath);
This event function is used after the completion of the screenshot [only refers to the screenshot when clicking on the completion or double-click the selected area to complete the screenshot; save the screenshot and cancel does not trigger this event], notify the Javascript for subsequent processing, Javascript needs to listen to this event in the browser beforehand, in the event of receipt of the event notification, you can get to the screenshot of the relevant data for the follow-up to the server uploaded to the processing.
Parameter Description.
	parameter name
	parameter type
	Parameter description
	Remarks

	type
	int
	The notification type of the callback function, the
	1, indicating completion of the screenshot
2, indicating that the screenshot is canceled
3, indicating that the screenshot was saved separately during the process of taking the screenshot
4,Indicates the event notification for getting a screenshot from the clipboard
When you receive this notification, please make a judgment according to the value of different types

	x
	int
	Returns the coordinates of the area where the screenshot was taken after completing the screenshot
	

	y
	int
	
	

	width
	int
	
	

	height
	int
	
	

	extinfo
	String
	for transmitting additional parameters
	This value is a json string, can be parsed twice, which contains the name of the button to complete the screenshot, to match the custom button function

	picdata
	String
	Image data in the form of a string encoded in BASE64
	In Javascript, you can Urlencode this data and then send it to the server via Ajax for storage.

	localsavepath
	String
	This screenshot is saved in the local path
	

5. Other interfaces
GetVersion and GetLocation
These two interfaces directly return a string indicating the version number of the control and the path to the control on the computer.
Currently only IE or npapi enabled browsers are supported.
GetCursorPosition
Returns the current mouse coordinates relative to the origin of the screen, which is used to assist in the positioning of areas of the browser where you wish to have a fixed interception [needed for mapping conversion between the browser area and the screen area].
Currently only IE or npapi enabled browsers are supported
The return value is a comma-separated string representing the x- and y-coordinates, respectively
Example:alert(niuniuCapture().
SavePicture
For the just intercepted image, through the Save As window to save the path after the first [this interface is suitable for those who want to save the image to the local computer needs]
Currently only IE or npapi enabled browsers are supported.
The return value is an integer, which means.
0:Failure
1:Success
2:Cancel the save
3: No screenshots, no need to save
Example: var ret=niuniuCapture()SavePicture('');
where the passed parameter indicates the default file name to be saved, can be passed empty.
Note: the following screenshot control sample code is mainly used to demonstrate how to call the control through JS, but the core part of the call has been fully encapsulated into the niuniucapture.js, in general, you do not need to modify only the content of the file, only need to refer to and write their own separate JS to integrate with the UI can be, see the site in the sample code (capturewrapper.js).
6. Example of a call to
For a demo of the web call of NiuNiu Screenshot, please visit the address: , https://ggniu.com/screencapture/onlinedemo/#ct2
NiuNiu screenshot control of the core call code has been encapsulated into niuniucapture.js, and in the internal handling of a variety of different browser calls.
The following is a brief description of the part of the demo code; in the web page, after referencing niuniucapture.js, use the control through the following code.
/*

Used to initialize the cow screenshot control, this function needs to be called immediately after the page is loaded
In this function, you can set the related screenshot UI control, such as, brush size, border color, etc. [This part of the information in the niuniucapture.js also has a default value, directly modify the default value can also be].
*/

function Init()

{

 captureObj = new NiuniuCaptureObject();

 captureObj.NiuniuAuthKey = "niuniu";

 //Here you can set the relevant parameters
 captureObj.TrackColor = rgb2value(255, 0, 0);

 captureObj.EditBorderColor = rgb2value(0, 0, 255);

 // Set the callback function for when the control is loaded and when the screenshot is complete
 captureObj.FinishedCallback = OnCaptureFinishedCallback;

 captureObj.PluginLoadedCallback = PluginLoadedCallback;

 //Initialize the control
 captureObj.InitNiuniuCapture();

}
Then there's the callback that responds to when the control is loaded and when the screenshot is done: the
/*

The function that is called when the control is successfully loaded, where you can control the corresponding UI display
*/

function PluginLoadedCallback(success)

{

 if(success)

 {

 $('#imgshow').hide();

 $('#imgshow').attr('src', "./image/loading.gif?v=1");

 $('#btnReload').hide();

 $('#btnCapture').show();

 }

}
After the completion of the event, you can upload the image data to the server through Ajax [if you are canceling the queue, etc., you need to do other corresponding processing].
var data = "userid=test111&picdata=" + encodeURIComponent(picdata);

 //Check here can not cross-domain to upload pictures, because cross-domain, then, can not be submitted in the form of POST, can only upload a very small picture data, if the picture is a little larger will not work
 $.ajax({

 type: "POST",

 url: "./upload.ashx",

 dataType: "jsonp",

 jsonp: "callback",

 data: data,

 success: function (obj) {

 if(obj.code==0)

 {

 $('#show').html('Uploaded successfully, image address:' + obj.info);

 $('#imgshow').show();

 $('#imgshow').attr('src', obj.info);

 }

 else

 {

 $('#show').html('Upload Failed :' + obj.info);

 }

 },

error : function(){$('#show').html('Upload failed due to network conditions.') ; }
 });
The background language can be any Web development language, as long as the normal acceptance of HTTP POST request, and the parameters of the picdata for Base64Decode to get the real picture data array, and then stored to disk can be, the following provides a server-side implementation in C#.
public class Upload : IHttpHandler

 {

 public void ProcessRequest(HttpContext context)

 {

 context.Response.ContentType = "text/plain";

 string callback = context.Request["callback"];

 string strValue = SavePictureAndReturn(context);

 string strRet = callback + "(" + strValue + ")";

 context.Response.Write(strRet);

 }

 private string SavePictureAndReturn(HttpContext context)

 {

 string data = context.Request["picdata"];

 byte[] byteData = null;

 byteData = Convert.FromBase64String(data);

 string imageName = "picsave.jpg";

 File.WriteAllBytes(System.AppDomain.CurrentDomain.BaseDirectory + imageName, byteData);

 //{"code":0,"info":"URL"}

 int retCode = 0;

 string strInfo = context.Request.Url.ToString().ToLower();

 strInfo = strInfo.Substring(0, strInfo.IndexOf("upload.ashx"));

 strInfo += imageName + "?ttt=" + DateTime.Now.ToFileTime();

 return "{" + string.Format("\"code\":{0},\"info\":\"{1}\"", retCode, strInfo) + "}";

 }

 public bool IsReusable

 {

 get

 {

 return false;

 }

 }

 }
Note: The above screenshot control call the core part has been fully encapsulated to niuniucapture.js, in general, you do not need to modify only the content of the file, just quote, and write their own JS to integrate with the UI can be, see the site in the sample code (capturewrapper.js).
7. Certificate Automatic Renewal Integration Description
As we integrate screenshots in the https page, we need to take a screenshot of the plug-in to use ssl certificates; at the same time, due to the current ssl certificates can only be issued once a year, in order to avoid frequent updates to the screenshot program, giving the user a bad experience, we support the dynamic signing of the certificate upgrades, and roughly the detection of upgrading the process is as follows:.
1) Check whether the certificate in the directory where the screenshot program is located is expired, if it is not expired, then use it directly
2) If expired, find %appdata%/capturename/server.pem certificate is expired or not, if it exists and not expired, then use it directly
3) If the certificate under %appdata% does not exist or has expired, then go to download a new certificate through the configured url path, and apply the new certificate directly after the successful download
Requires the integrator to do the following.
1) Before customizing the plug-in to provide ssl certificate, domain name resolution to 127.0.0.1 (a second-level domain name can be)
2) provide the certificate update url path (to the directory), to ensure that this Url is the next deployment of the screenshot plug-ins can be directly accessed by the machine, such as: http://www.ggniu.cn/certtest/
3) In the directory on the server corresponding to the above url, place three files
set.ini

server.pem

server.key

The name of server.pem and server.key can be adjusted arbitrarily, and at the same time in the set.ini configuration, set.ini content is as follows.
[set]

cert_file_name=server.pem

cert_file_size=3813

cert_file_md5=e41e41c5e9e7e1546f5519650b70a8db

key_file_name=server.key

key_file_size=1704

key_file_md5=845c504ae4ff6430bf6f7fad2c4daf25
Record clearly the name, size and md5 value of the certificate file and key file, respectively. The
It is recommended to apply for a new certificate and update it to the server one month in advance, make sure the size, md5 value and name are configured correctly, otherwise the download will fail.
Our screenshot process provides a command line way to verify that this configuration is accurate, after updating to the server, you can use this method to verify it.
1) Verify the certificate download command.
CaptureExtension.exe --downloadcert=http://www.ggniu.cn/testcert/
If all is well, the following message will be displayed.
[image: image2.png]certname: /CN="

expire: 202
CAUsers\Administrator\AppData\Roaming)\certtestiserver.pem

2) verify the validity of the certificate
After applying for a certificate, you can also verify it with this command.
CaptureExtension.exe --checkcert=E:\test\server.pem
[image: image3.png]certname: /CN="

expire: 202
CAUsers\Administrator\AppData\Roaming)\certtestiserver.pem

3) Verify that the certificate matches the private key (openssl command)
openssl x509 -noout -modulus -in server.pem | openssl md5 ; openssl rsa -noout -modulus -in server.key | openssl md5
Outputs consistent results i.e. matches.
